Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you find all the different ways of lining up these Cuisenaire rods?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

How many different triangles can you make on a circular pegboard that has nine pegs?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you find all the different triangles on these peg boards, and find their angles?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Can you fit the tangram pieces into the outline of this junk?

Use the interactivity or play this dice game yourself. How could you make it fair?

An interactive activity for one to experiment with a tricky tessellation

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Mai Ling?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Find out what a "fault-free" rectangle is and try to make some of your own.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?