Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

If you have only four weights, where could you place them in order to balance this equaliser?

Find out what a "fault-free" rectangle is and try to make some of your own.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Can you find all the different ways of lining up these Cuisenaire rods?

An environment which simulates working with Cuisenaire rods.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you find all the different triangles on these peg boards, and find their angles?