A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

Can you fit the tangram pieces into the outlines of these people?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you fit the tangram pieces into the outlines of these clocks?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this telephone?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you fit the tangram pieces into the outline of Granma T?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Can you complete this jigsaw of the multiplication square?

Can you fit the tangram pieces into the outline of Little Fung at the table?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What is the greatest number of squares you can make by overlapping three squares?

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

An interactive activity for one to experiment with a tricky tessellation

Exchange the positions of the two sets of counters in the least possible number of moves

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

If you have only four weights, where could you place them in order to balance this equaliser?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

How many different triangles can you make on a circular pegboard that has nine pegs?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.