Can you fit the tangram pieces into the outline of Mai Ling?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Can you fit the tangram pieces into the outline of this junk?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of the chairs?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

These interactive dominoes can be dragged around the screen.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

What is the greatest number of squares you can make by overlapping three squares?

Exchange the positions of the two sets of counters in the least possible number of moves

An interactive activity for one to experiment with a tricky tessellation

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you fit the tangram pieces into the outline of Granma T?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Train game for an adult and child. Who will be the first to make the train?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of these people?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?