A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Work out the fractions to match the cards with the same amount of money.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Use the interactivity or play this dice game yourself. How could you make it fair?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Mai Ling?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this junk?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Can you fit the tangram pieces into the outline of Granma T?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you fit the tangram pieces into the outline of the child walking home from school?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

An interactive activity for one to experiment with a tricky tessellation

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Exchange the positions of the two sets of counters in the least possible number of moves

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you fit the tangram pieces into the outlines of these clocks?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Can you fit the tangram pieces into the outlines of these people?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Can you fit the tangram pieces into the outline of the telescope and microscope?