A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this goat and giraffe?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of these convex shapes?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the rocket?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the chairs?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Can you fit the tangram pieces into the outline of this telephone?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Use the interactivity or play this dice game yourself. How could you make it fair?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?