Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you complete this jigsaw of the multiplication square?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Here is a chance to play a version of the classic Countdown Game.

If you have only four weights, where could you place them in order to balance this equaliser?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Use the interactivities to complete these Venn diagrams.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Can you find all the different ways of lining up these Cuisenaire rods?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

An environment which simulates working with Cuisenaire rods.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

How many different triangles can you make on a circular pegboard that has nine pegs?