Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

An activity based on the game 'Pelmanism'. Set your own level of challenge and beat your own previous best score.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Here is a chance to play a version of the classic Countdown Game.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you fit the tangram pieces into the outline of Little Ming?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Exchange the positions of the two sets of counters in the least possible number of moves

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Find out what a "fault-free" rectangle is and try to make some of your own.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Work out the fractions to match the cards with the same amount of money.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Can you fit the tangram pieces into the outlines of the workmen?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.