Work out how to light up the single light. What's the rule?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Here is a chance to play a version of the classic Countdown Game.

Can you explain the strategy for winning this game with any target?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Find out what a "fault-free" rectangle is and try to make some of your own.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

An environment which simulates working with Cuisenaire rods.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you fit the tangram pieces into the outline of Granma T?

Can you complete this jigsaw of the multiplication square?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you find all the different triangles on these peg boards, and find their angles?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How many different triangles can you make on a circular pegboard that has nine pegs?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Can you fit the tangram pieces into the outline of this telephone?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you find all the different ways of lining up these Cuisenaire rods?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?