How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these clocks?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

These interactive dominoes can be dragged around the screen.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of the child walking home from school?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Work out the fractions to match the cards with the same amount of money.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Can you fit the tangram pieces into the outline of Granma T?

Use the interactivity to move Mr Pearson and his dog. Can you move him so that the graph shows a curve?

Use the interactivity or play this dice game yourself. How could you make it fair?

Can you fit the tangram pieces into the outline of this telephone?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

What is the greatest number of squares you can make by overlapping three squares?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Can you fit the tangram pieces into the outline of the rocket?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

An interactive activity for one to experiment with a tricky tessellation