Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

If you have only four weights, where could you place them in order to balance this equaliser?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Work out the fractions to match the cards with the same amount of money.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Can you complete this jigsaw of the multiplication square?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you find all the different ways of lining up these Cuisenaire rods?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Train game for an adult and child. Who will be the first to make the train?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

An interactive activity for one to experiment with a tricky tessellation