Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its vertical and horizontal movement at each stage.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you beat the computer in the challenging strategy game?

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its speed at each stage.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Work out how to light up the single light. What's the rule?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

If you have only four weights, where could you place them in order to balance this equaliser?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.