A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Can you find all the different triangles on these peg boards, and find their angles?

Use the interactivity or play this dice game yourself. How could you make it fair?

Explore this interactivity and see if you can work out what it does. Could you use it to estimate the area of a shape?

If you have only four weights, where could you place them in order to balance this equaliser?

Use the interactivities to complete these Venn diagrams.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

What is the greatest number of squares you can make by overlapping three squares?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Match pairs of cards so that they have equivalent ratios.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you find all the different ways of lining up these Cuisenaire rods?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this telephone?