Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Here is a chance to play a version of the classic Countdown Game.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

An environment which simulates working with Cuisenaire rods.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

If you have only four weights, where could you place them in order to balance this equaliser?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Can you complete this jigsaw of the multiplication square?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Try out the lottery that is played in a far-away land. What is the chance of winning?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Work out how to light up the single light. What's the rule?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you find all the different ways of lining up these Cuisenaire rods?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

An interactive activity for one to experiment with a tricky tessellation

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?