Can you complete this jigsaw of the multiplication square?

An environment which simulates working with Cuisenaire rods.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

If you have only four weights, where could you place them in order to balance this equaliser?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Here is a chance to play a version of the classic Countdown Game.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Work out the fractions to match the cards with the same amount of money.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

An activity based on the game 'Pelmanism'. Set your own level of challenge and beat your own previous best score.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Work out how to light up the single light. What's the rule?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Train game for an adult and child. Who will be the first to make the train?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

An interactive activity for one to experiment with a tricky tessellation

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.