Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Can you complete this jigsaw of the multiplication square?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

An environment which simulates working with Cuisenaire rods.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Here is a chance to play a version of the classic Countdown Game.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Use the interactivities to complete these Venn diagrams.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Work out the fractions to match the cards with the same amount of money.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

If you have only four weights, where could you place them in order to balance this equaliser?

An activity based on the game 'Pelmanism'. Set your own level of challenge and beat your own previous best score.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

An interactive activity for one to experiment with a tricky tessellation

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A collection of resources to support work on Factors and Multiples at Secondary level.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Work out how to light up the single light. What's the rule?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?