Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

What happens when you try and fit the triomino pieces into these two grids?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

An environment which simulates working with Cuisenaire rods.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

How many different triangles can you make on a circular pegboard that has nine pegs?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Move just three of the circles so that the triangle faces in the opposite direction.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

If you have only four weights, where could you place them in order to balance this equaliser?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?