This activity challenges you to make collections of shapes. Can you give your collection a name?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

The computer has made a rectangle and will tell you the number of spots it uses in total. Can you find out where the rectangle is?

Complete the squares - but be warned some are trickier than they look!

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

How many different rhythms can you make by putting two drums on the wheel?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Exchange the positions of the two sets of counters in the least possible number of moves

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

An interactive activity for one to experiment with a tricky tessellation

Take it in turns to make a triangle on the pegboard. Can you block your opponent?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

How many different triangles can you make on a circular pegboard that has nine pegs?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Terry and Ali are playing a game with three balls. Is it fair that Terry wins when the middle ball is red?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Find out what a "fault-free" rectangle is and try to make some of your own.

What is the greatest number of squares you can make by overlapping three squares?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?