There are three versions of this challenge. The idea is to change the colour of all the spots on the grid. Can you do it in fewer throws of the dice?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

You'll need two dice to play this game against a partner. Will Incey Wincey make it to the top of the drain pipe or the bottom of the drain pipe first?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Play this well-known game against the computer where each player is equally likely to choose scissors, paper or rock. Why not try the variations too?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How many different rhythms can you make by putting two drums on the wheel?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

An interactive activity for one to experiment with a tricky tessellation

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Take it in turns to make a triangle on the pegboard. Can you block your opponent?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Can you hang weights in the right place to make the equaliser balance?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Move just three of the circles so that the triangle faces in the opposite direction.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

What happens when you try and fit the triomino pieces into these two grids?