This is a game for two players. Can you find out how to be the first to get to 12 o'clock?

Stop the Clock game for an adult and child. How can you make sure you always win this game?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Work out the fractions to match the cards with the same amount of money.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Can you fit the tangram pieces into the outline of Granma T?

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Can you fit the tangram pieces into the outlines of the chairs?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Exchange the positions of the two sets of counters in the least possible number of moves

An interactive activity for one to experiment with a tricky tessellation

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Take it in turns to make a triangle on the pegboard. Can you block your opponent?

Move just three of the circles so that the triangle faces in the opposite direction.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Complete the squares - but be warned some are trickier than they look!