Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

Move just three of the circles so that the triangle faces in the opposite direction.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

What is the greatest number of squares you can make by overlapping three squares?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Exchange the positions of the two sets of counters in the least possible number of moves

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Sort the houses in my street into different groups. Can you do it in any other ways?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?