Can you put these shapes in order of size? Start with the smallest.

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

Work out the fractions to match the cards with the same amount of money.

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

An interactive activity for one to experiment with a tricky tessellation

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Complete the squares - but be warned some are trickier than they look!

Use the interactivity or play this dice game yourself. How could you make it fair?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Use the interactivity to move Mr Pearson and his dog. Can you move him so that the graph shows a curve?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of this telephone?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Exchange the positions of the two sets of counters in the least possible number of moves

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these clocks?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Can you fit the tangram pieces into the outlines of these people?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Move just three of the circles so that the triangle faces in the opposite direction.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you fit the tangram pieces into the outline of the child walking home from school?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Take it in turns to make a triangle on the pegboard. Can you block your opponent?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Arrange any number of counters from these 18 on the grid to make a rectangle. What numbers of counters make rectangles? How many different rectangles can you make with each number of counters?

Play this well-known game against the computer where each player is equally likely to choose scissors, paper or rock. Why not try the variations too?