Can you hang weights in the right place to make the equaliser balance?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Use the number weights to find different ways of balancing the equaliser.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Can you find all the different ways of lining up these Cuisenaire rods?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

What happens when you try and fit the triomino pieces into these two grids?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you complete this jigsaw of the multiplication square?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

If you have only four weights, where could you place them in order to balance this equaliser?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Investigate the different sounds you can make by putting the owls and donkeys on the wheel.

How many trains can you make which are the same length as Matt's, using rods that are identical?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Terry and Ali are playing a game with three balls. Is it fair that Terry wins when the middle ball is red?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

How many different rhythms can you make by putting two drums on the wheel?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?