An environment which simulates working with Cuisenaire rods.

How many trains can you make which are the same length as Matt's, using rods that are identical?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Train game for an adult and child. Who will be the first to make the train?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

What happens when you try and fit the triomino pieces into these two grids?

Investigate the different sounds you can make by putting the owls and donkeys on the wheel.

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Can you complete this jigsaw of the multiplication square?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Work out the fractions to match the cards with the same amount of money.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Use the number weights to find different ways of balancing the equaliser.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Here is a chance to play a version of the classic Countdown Game.

If you have only four weights, where could you place them in order to balance this equaliser?

Find out what a "fault-free" rectangle is and try to make some of your own.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you hang weights in the right place to make the equaliser balance?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?