How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you find all the different ways of lining up these Cuisenaire rods?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

How many different rhythms can you make by putting two drums on the wheel?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

What happens when you try and fit the triomino pieces into these two grids?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Train game for an adult and child. Who will be the first to make the train?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Find out what a "fault-free" rectangle is and try to make some of your own.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Can you find all the different triangles on these peg boards, and find their angles?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Move just three of the circles so that the triangle faces in the opposite direction.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

If you have only four weights, where could you place them in order to balance this equaliser?

Complete the squares - but be warned some are trickier than they look!

Terry and Ali are playing a game with three balls. Is it fair that Terry wins when the middle ball is red?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?