Terry and Ali are playing a game with three balls. Is it fair that Terry wins when the middle ball is red?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Can you find all the different ways of lining up these Cuisenaire rods?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Use the interactivity or play this dice game yourself. How could you make it fair?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

What happens when you try and fit the triomino pieces into these two grids?

Can you hang weights in the right place to make the equaliser balance?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

How many different rhythms can you make by putting two drums on the wheel?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

How many different triangles can you make on a circular pegboard that has nine pegs?

Investigate the different sounds you can make by putting the owls and donkeys on the wheel.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Move just three of the circles so that the triangle faces in the opposite direction.

An interactive activity for one to experiment with a tricky tessellation

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Exchange the positions of the two sets of counters in the least possible number of moves