A game for two or more players that uses a knowledge of measuring tools. Spin the spinner and identify which jobs can be done with the measuring tool shown.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Use the interactivity to move Mr Pearson and his dog. Can you move him so that the graph shows a curve?

Try out the lottery that is played in a far-away land. What is the chance of winning?

What happens when you try and fit the triomino pieces into these two grids?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Use the number weights to find different ways of balancing the equaliser.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you put these shapes in order of size? Start with the smallest.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of these clocks?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

Here is a chance to play a version of the classic Countdown Game.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Explore this interactivity and see if you can work out what it does. Could you use it to estimate the area of a shape?

How many different rhythms can you make by putting two drums on the wheel?

Find out what a "fault-free" rectangle is and try to make some of your own.

How many trains can you make which are the same length as Matt's, using rods that are identical?