Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Take it in turns to make a triangle on the pegboard. Can you block your opponent?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Can you find all the different triangles on these peg boards, and find their angles?

Complete the squares - but be warned some are trickier than they look!

Move just three of the circles so that the triangle faces in the opposite direction.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Terry and Ali are playing a game with three balls. Is it fair that Terry wins when the middle ball is red?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

How many different triangles can you make on a circular pegboard that has nine pegs?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you complete this jigsaw of the multiplication square?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Work out the fractions to match the cards with the same amount of money.

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How many different rhythms can you make by putting two drums on the wheel?

An interactive activity for one to experiment with a tricky tessellation

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.