Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you hang weights in the right place to make the equaliser balance?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you complete this jigsaw of the multiplication square?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

An environment which simulates working with Cuisenaire rods.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Use the number weights to find different ways of balancing the equaliser.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Use the interactivity to sort these numbers into sets. Can you give each set a name?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Here is a chance to play a version of the classic Countdown Game.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Move just three of the circles so that the triangle faces in the opposite direction.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

An interactive activity for one to experiment with a tricky tessellation

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How many different rhythms can you make by putting two drums on the wheel?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?