Can you complete this jigsaw of the multiplication square?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

An environment which simulates working with Cuisenaire rods.

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Can you hang weights in the right place to make the equaliser balance?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

If you have only four weights, where could you place them in order to balance this equaliser?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Use the number weights to find different ways of balancing the equaliser.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Here is a chance to play a version of the classic Countdown Game.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Move just three of the circles so that the triangle faces in the opposite direction.

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Use the interactivities to complete these Venn diagrams.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Work out the fractions to match the cards with the same amount of money.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

Complete the squares - but be warned some are trickier than they look!

How many trains can you make which are the same length as Matt's, using rods that are identical?