NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Work out the fractions to match the cards with the same amount of money.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Complete the squares - but be warned some are trickier than they look!

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

An interactive activity for one to experiment with a tricky tessellation

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Exchange the positions of the two sets of counters in the least possible number of moves

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Move just three of the circles so that the triangle faces in the opposite direction.

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Take it in turns to make a triangle on the pegboard. Can you block your opponent?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

The computer has made a rectangle and will tell you the number of spots it uses in total. Can you find out where the rectangle is?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

What is the greatest number of squares you can make by overlapping three squares?

Train game for an adult and child. Who will be the first to make the train?

Square It game for an adult and child. Can you come up with a way of always winning this game?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Stop the Clock game for an adult and child. How can you make sure you always win this game?

Incey Wincey Spider game for an adult and child. Will Incey get to the top of the drainpipe?

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?