Use the information about Sally and her brother to find out how many children there are in the Brown family.

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

If you have only four weights, where could you place them in order to balance this equaliser?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Here is a chance to play a version of the classic Countdown Game.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you complete this jigsaw of the multiplication square?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Can you hang weights in the right place to make the equaliser balance?

Incey Wincey Spider game for an adult and child. Will Incey get to the top of the drainpipe?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Use the number weights to find different ways of balancing the equaliser.

There are three versions of this challenge. The idea is to change the colour of all the spots on the grid. Can you do it in fewer throws of the dice?

You'll need two dice to play this game against a partner. Will Incey Wincey make it to the top of the drain pipe or the bottom of the drain pipe first?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What happens when you try and fit the triomino pieces into these two grids?

Complete the squares - but be warned some are trickier than they look!

Move just three of the circles so that the triangle faces in the opposite direction.

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Play this well-known game against the computer where each player is equally likely to choose scissors, paper or rock. Why not try the variations too?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?