Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Find out what a "fault-free" rectangle is and try to make some of your own.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

Try out the lottery that is played in a far-away land. What is the chance of winning?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

What happens when you try and fit the triomino pieces into these two grids?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How many different rhythms can you make by putting two drums on the wheel?

Stop the Clock game for an adult and child. How can you make sure you always win this game?

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of Granma T?

Exchange the positions of the two sets of counters in the least possible number of moves

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Terry and Ali are playing a game with three balls. Is it fair that Terry wins when the middle ball is red?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.