Search by Topic

Resources tagged with Mixed triangles similar to Shapely Tiling:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 40 results

Broad Topics > 2D Geometry, Shape and Space > Mixed triangles

problem icon

Shapely Tiling

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

problem icon

Part the Polygons

Stage: 2 Short Challenge Level: Challenge Level:1

Draw three straight lines to separate these shapes into four groups - each group must contain one of each shape.

problem icon

Folding

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

What shapes can you make by folding an A4 piece of paper?

problem icon

Board Block for Two

Stage: 1 and 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

problem icon

Nine-pin Triangles

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many different triangles can you make on a circular pegboard that has nine pegs?

problem icon

Triangle Pin-down

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

problem icon

Sticks and Triangles

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

problem icon

Triangular Tantaliser

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Draw all the possible distinct triangles on a 4 x 4 dotty grid. Convince me that you have all possible triangles.

problem icon

Diagrams

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

A group activity using visualisation of squares and triangles.

problem icon

Shapely Pairs

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A game in which players take it in turns to turn up two cards. If they can draw a triangle which satisfies both properties they win the pair of cards. And a few challenging questions to follow...

problem icon

Linkage

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?

problem icon

Property Chart

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A game in which players take it in turns to try to draw quadrilaterals (or triangles) with particular properties. Is it possible to fill the game grid?

problem icon

Making Maths: Test the Strength of a Triangle

Stage: 2 Challenge Level: Challenge Level:1

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

problem icon

Putting Two and Two Together

Stage: 2 Challenge Level: Challenge Level:1

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

problem icon

Counting Triangles

Stage: 3 Challenge Level: Challenge Level:1

Triangles are formed by joining the vertices of a skeletal cube. How many different types of triangle are there? How many triangles altogether?

problem icon

Cartesian Isometric

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The graph below is an oblique coordinate system based on 60 degree angles. It was drawn on isometric paper. What kinds of triangles do these points form?

problem icon

Tetrahedra Tester

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

problem icon

Triangles All Around

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you find all the different triangles on these peg boards, and find their angles?

problem icon

Shear Magic

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

problem icon

Egyptian Rope

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

problem icon

Constructing Triangles

Stage: 3 Challenge Level: Challenge Level:1

Generate three random numbers to determine the side lengths of a triangle. What triangles can you draw?

problem icon

Trice

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

problem icon

Fraction Fascination

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

This problem challenges you to work out what fraction of the whole area of these pictures is taken up by various shapes.

problem icon

Triangle Inequality

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

problem icon

Rectangle Tangle

Stage: 2 Challenge Level: Challenge Level:1

The large rectangle is divided into a series of smaller quadrilaterals and triangles. Can you untangle what fractional part is represented by each of the ten numbered shapes?

problem icon

Tri.'s

Stage: 2 Challenge Level: Challenge Level:1

How many triangles can you make on the 3 by 3 pegboard?

problem icon

Cutting it Out

Stage: 1 and 2 Challenge Level: Challenge Level:1

I cut this square into two different shapes. What can you say about the relationship between them?

problem icon

Hex

Stage: 3 Challenge Level: Challenge Level:1

Explain how the thirteen pieces making up the regular hexagon shown in the diagram can be re-assembled to form three smaller regular hexagons congruent to each other.

problem icon

Threesomes

Stage: 3 Challenge Level: Challenge Level:1

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

problem icon

Triangle Island

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have pitched your tent (the red triangle) on an island. Can you move it to the position shown by the purple triangle making sure you obey the rules?

problem icon

Tessellating Triangles

Stage: 2 Challenge Level: Challenge Level:1

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

problem icon

Peg and Pin Boards

Stage: 1 and 2

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

problem icon

Adding Triangles

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the total area of the first two triangles as a fraction of the original A4 rectangle? What is the total area of the first three triangles as a fraction of the original A4 rectangle? If. . . .

problem icon

Ratty

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

problem icon

Floored

Stage: 3 Challenge Level: Challenge Level:1

A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?

problem icon

Notes on a Triangle

Stage: 3 Challenge Level: Challenge Level:1

Can you describe what happens in this film?

problem icon

Bracelets

Stage: 2 Challenge Level: Challenge Level:1

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

problem icon

Liethagoras' Theorem

Stage: 2 and 3

Liethagoras, Pythagoras' cousin (!), was jealous of Pythagoras and came up with his own theorem. Read this article to find out why other mathematicians laughed at him.

problem icon

Kissing Triangles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Determine the total shaded area of the 'kissing triangles'.

problem icon

Number the Sides

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

The triangles in these sets are similar - can you work out the lengths of the sides which have question marks?