Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

This investigation is about happy numbers in the World of the Octopus where all numbers are written in base 8 ... Find all the fixed points and cycles for the happy number sequences in base 8.

How many six digit numbers are there which DO NOT contain a 5?

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

The number 10112359550561797752808988764044943820224719 is called a 'slippy number' because, when the last digit 9 is moved to the front, the new number produced is the slippy number multiplied by 9.

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

Imagine a machine with four coloured lights which respond to different rules. Can you find the smallest possible number which will make all four colours light up?

Are these statements always true, sometimes true or never true?

Can you find any perfect numbers? Read this article to find out more...

Can you work out how many of each kind of pencil this student bought?

A combination mechanism for a safe comprises thirty-two tumblers numbered from one to thirty-two in such a way that the numbers in each wheel total 132... Could you open the safe?

This challenge is to make up YOUR OWN alphanumeric. Each letter represents a digit and where the same letter appears more than once it must represent the same digit each time.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

In how many ways can a pound (value 100 pence) be changed into some combination of 1, 2, 5, 10, 20 and 50 pence coins?

There are some water lilies in a lake. The area that they cover doubles in size every day. After 17 days the whole lake is covered. How long did it take them to cover half the lake?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you make a hypothesis to explain these ancient numbers?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

Ranging from kindergarten mathematics to the fringe of research this informal article paints the big picture of number in a non technical way suitable for primary teachers and older students.

How many positive integers less than or equal to 4000 can be written down without using the digits 7, 8 or 9?

This is a game in which your counters move in a spiral round the snail's shell. It is about understanding tens and units.

What would you do if your teacher asked you add all the numbers from 1 to 100? Find out how Carl Gauss responded when he was asked to do just that.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Suppose you had to begin the never ending task of writing out the natural numbers: 1, 2, 3, 4, 5.... and so on. What would be the 1000th digit you would write down.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Guess the Dominoes for child and adult. Work out which domino your partner has chosen by asking good questions.

Can you find ways of joining cubes together so that 28 faces are visible?

This task depends on learners sharing reasoning, listening to opinions, reflecting and pulling ideas together.

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Work out how to light up the single light. What's the rule?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

A case is found with a combination lock. There is one clue about the number needed to open the case. Can you find the number and open the case?

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Is there an efficient way to work out how many factors a large number has?

When asked how old she was, the teacher replied: My age in years is not prime but odd and when reversed and added to my age you have a perfect square...

This article explains how credit card numbers are defined and the check digit serves to verify their accuracy.

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

Show that 8778, 10296 and 13530 are three triangular numbers and that they form a Pythagorean triple.