This problem looks at how one example of your choice can show something about the general structure of multiplication.

This investigates one particular property of number by looking closely at an example of adding two odd numbers together.

How would you create the largest possible two-digit even number from the digit I've given you and one of your choice?

I am less than 25. My ones digit is twice my tens digit. My digits add up to an even number.

Each child in Class 3 took four numbers out of the bag. Who had made the highest even number?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

How many legs do each of these creatures have? How many pairs is that?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

You can trace over all of the diagonals of a pentagon without lifting your pencil and without going over any more than once. Can the same thing be done with a hexagon or with a heptagon?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Can you find the chosen number from the grid using the clues?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Daisy and Akram were making number patterns. Daisy was using beads that looked like flowers and Akram was using cube bricks. First they were counting in twos.

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Use the interactivities to complete these Venn diagrams.

Try grouping the dominoes in the ways described. Are there any left over each time? Can you explain why?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Use the interactivity to sort these numbers into sets. Can you give each set a name?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

This activity is best done with a whole class or in a large group. Can you match the cards? What happens when you add pairs of the numbers together?