Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Use the interactivity to sort these numbers into sets. Can you give each set a name?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Use the interactivities to complete these Venn diagrams.

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

This problem looks at how one example of your choice can show something about the general structure of multiplication.

This investigates one particular property of number by looking closely at an example of adding two odd numbers together.

How many legs do each of these creatures have? How many pairs is that?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

Daisy and Akram were making number patterns. Daisy was using beads that looked like flowers and Akram was using cube bricks. First they were counting in twos.

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

I am less than 25. My ones digit is twice my tens digit. My digits add up to an even number.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

How would you create the largest possible two-digit even number from the digit I've given you and one of your choice?

Can you find the chosen number from the grid using the clues?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Place the numbers 1, 2, 3,..., 9 one on each square of a 3 by 3 grid so that all the rows and columns add up to a prime number. How many different solutions can you find?

Are these statements always true, sometimes true or never true?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

You can trace over all of the diagonals of a pentagon without lifting your pencil and without going over any more than once. Can the same thing be done with a hexagon or with a heptagon?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Each child in Class 3 took four numbers out of the bag. Who had made the highest even number?

How many different sets of numbers with at least four members can you find in the numbers in this box?