My train left London between 6 a.m. and 7 a.m. and arrived in Paris between 9 a.m. and 10 a.m. At the start and end of the journey the hands on my watch were in exactly the same positions but the. . . .

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Fifteen students had to travel 60 miles. They could use a car, which could only carry 5 students. As the car left with the first 5 (at 40 miles per hour), the remaining 10 commenced hiking along the. . . .

A moveable screen slides along a mirrored corridor towards a centrally placed light source. A ray of light from that source is directed towards a wall of the corridor, which it strikes at 45 degrees. . . .

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

If the sides of the triangle in the diagram are 3, 4 and 5, what is the area of the shaded square?

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

In a snooker game the brown ball was on the lip of the pocket but it could not be hit directly as the black ball was in the way. How could it be potted by playing the white ball off a cushion?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Think of a number and follow my instructions. Tell me your answer, and I'll tell you what you started with! Can you explain how I know?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Can you make sense of these three proofs of Pythagoras' Theorem?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Use algebra to reason why 16 and 32 are impossible to create as the sum of consecutive numbers.

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

How good are you at finding the formula for a number pattern ?

Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

Think of a number... follow the machine's instructions. I know what your number is! Can you explain how I know?

Triangle ABC is isosceles while triangle DEF is equilateral. Find one angle in terms of the other two.

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?