A hallway floor is tiled and each tile is one foot square. Given that the number of tiles around the perimeter is EXACTLY half the total number of tiles, find the possible dimensions of the hallway.

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Can you find the area of a parallelogram defined by two vectors?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

The well known Fibonacci sequence is 1 ,1, 2, 3, 5, 8, 13, 21.... How many Fibonacci sequences can you find containing the number 196 as one of the terms?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Think of a number... follow the machine's instructions. I know what your number is! Can you explain how I know?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Think of a number and follow my instructions. Tell me your answer, and I'll tell you what you started with! Can you explain how I know?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

If the sides of the triangle in the diagram are 3, 4 and 5, what is the area of the shaded square?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = nĀ² Use the diagram to show that any odd number is the difference of two squares.

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

A job needs three men but in fact six people do it. When it is finished they are all paid the same. How much was paid in total, and much does each man get if the money is shared as Fred suggests?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you make sense of these three proofs of Pythagoras' Theorem?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

Use algebra to reason why 16 and 32 are impossible to create as the sum of consecutive numbers.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?