Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

A job needs three men but in fact six people do it. When it is finished they are all paid the same. How much was paid in total, and much does each man get if the money is shared as Fred suggests?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you make sense of these three proofs of Pythagoras' Theorem?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

The well known Fibonacci sequence is 1 ,1, 2, 3, 5, 8, 13, 21.... How many Fibonacci sequences can you find containing the number 196 as one of the terms?

Think of a number... follow the machine's instructions. I know what your number is! Can you explain how I know?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you find a rule which connects consecutive triangular numbers?

Think of a number and follow my instructions. Tell me your answer, and I'll tell you what you started with! Can you explain how I know?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

If the sides of the triangle in the diagram are 3, 4 and 5, what is the area of the shaded square?

Show that all pentagonal numbers are one third of a triangular number.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

A hallway floor is tiled and each tile is one foot square. Given that the number of tiles around the perimeter is EXACTLY half the total number of tiles, find the possible dimensions of the hallway.

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = nĀ² Use the diagram to show that any odd number is the difference of two squares.

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?