Search by Topic

Resources tagged with Creating expressions/formulae similar to Back to the Planet of Vuvv:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 86 results

Broad Topics > Algebra > Creating expressions/formulae

problem icon

Legs Eleven

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

problem icon

Enriching Experience

Stage: 4 Challenge Level: Challenge Level:1

Find the five distinct digits N, R, I, C and H in the following nomogram

problem icon

Special Sums and Products

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

problem icon

Back to Basics

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find b where 3723(base 10) = 123(base b).

problem icon

Seven Up

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?

problem icon

Even So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

problem icon

Quick Times

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

problem icon

Chocolate Maths

Stage: 3 Challenge Level: Challenge Level:1

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

problem icon

Number Rules - OK

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

problem icon

2-digit Square

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

problem icon

Days and Dates

Stage: 4 Challenge Level: Challenge Level:1

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

problem icon

Always a Multiple?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

problem icon

Your Number Is...

Stage: 3 Challenge Level: Challenge Level:1

Think of a number... follow the machine's instructions. I know what your number is! Can you explain how I know?

problem icon

Reasonable Algebra

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Use algebra to reason why 16 and 32 are impossible to create as the sum of consecutive numbers.

problem icon

Inside Outside

Stage: 4 Challenge Level: Challenge Level:1

Balance the bar with the three weight on the inside.

problem icon

Balance Point

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

problem icon

Terminology

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Triangle ABC is isosceles while triangle DEF is equilateral. Find one angle in terms of the other two.

problem icon

Good Work If You Can Get It

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A job needs three men but in fact six people do it. When it is finished they are all paid the same. How much was paid in total, and much does each man get if the money is shared as Fred suggests?

problem icon

Magic Sums and Products

Stage: 3 and 4

How to build your own magic squares.

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Fibs

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The well known Fibonacci sequence is 1 ,1, 2, 3, 5, 8, 13, 21.... How many Fibonacci sequences can you find containing the number 196 as one of the terms?

problem icon

Plum Tree

Stage: 4 and 5 Challenge Level: Challenge Level:1

Label this plum tree graph to make it totally magic!

problem icon

Mindreader

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

problem icon

Boxed In

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?

problem icon

Magic W

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

problem icon

Hike and Hitch

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Fifteen students had to travel 60 miles. They could use a car, which could only carry 5 students. As the car left with the first 5 (at 40 miles per hour), the remaining 10 commenced hiking along the. . . .

problem icon

How Many Miles to Go?

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

problem icon

Lower Bound

Stage: 3 Challenge Level: Challenge Level:1

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

problem icon

More Number Pyramids

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

problem icon

Perfectly Square

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The sums of the squares of three related numbers is also a perfect square - can you explain why?

problem icon

Number Pyramids

Stage: 3 Challenge Level: Challenge Level:1

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

problem icon

Pair Products

Stage: 4 Challenge Level: Challenge Level:1

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

problem icon

Circle-in

Stage: 4 Challenge Level: Challenge Level:1

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

problem icon

Unit Interval

Stage: 4 and 5 Challenge Level: Challenge Level:1

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

problem icon

Three Four Five

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

problem icon

Interactive Number Patterns

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

How good are you at finding the formula for a number pattern ?

problem icon

Partially Painted Cube

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

Pythagoras Proofs

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make sense of these three proofs of Pythagoras' Theorem?

problem icon

Generating Triples

Stage: 4 Challenge Level: Challenge Level:1

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

problem icon

Steel Cables

Stage: 4 Challenge Level: Challenge Level:1

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

problem icon

Marbles in a Box

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

problem icon

Seven Squares

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

problem icon

Crossed Ends

Stage: 3 Challenge Level: Challenge Level:1

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Triangles Within Triangles

Stage: 4 Challenge Level: Challenge Level:1

Can you find a rule which connects consecutive triangular numbers?

problem icon

' Tis Whole

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?

problem icon

Triangles Within Pentagons

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that all pentagonal numbers are one third of a triangular number.

problem icon

Screen Shot

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A moveable screen slides along a mirrored corridor towards a centrally placed light source. A ray of light from that source is directed towards a wall of the corridor, which it strikes at 45 degrees. . . .

problem icon

How Big?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

If the sides of the triangle in the diagram are 3, 4 and 5, what is the area of the shaded square?