Search by Topic

Resources tagged with Creating expressions/formulae similar to Weekly Problem 20 - 2006:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 40 results

Broad Topics > Algebra > Creating expressions/formulae

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Number Pyramids

Stage: 3 Challenge Level: Challenge Level:1

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

Partitioning Revisited

Stage: 3 Challenge Level: Challenge Level:1

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

problem icon

Summing Consecutive Numbers

Stage: 3 Challenge Level: Challenge Level:1

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

problem icon

Marbles in a Box

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

problem icon

Top-heavy Pyramids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

problem icon

Terminology

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Triangle ABC is isosceles while triangle DEF is equilateral. Find one angle in terms of the other two.

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

How Many Miles to Go?

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

problem icon

Lower Bound

Stage: 3 Challenge Level: Challenge Level:1

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

problem icon

Chocolate Maths

Stage: 3 Challenge Level: Challenge Level:1

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

problem icon

Always the Same

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

problem icon

Special Numbers

Stage: 3 Challenge Level: Challenge Level:1

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

problem icon

Seven Squares

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

problem icon

Crossed Ends

Stage: 3 Challenge Level: Challenge Level:1

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

problem icon

Pinned Squares

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

problem icon

Mindreader

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

problem icon

Special Sums and Products

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

problem icon

Sum Equals Product

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

problem icon

More Number Pyramids

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

problem icon

Your Number Is...

Stage: 3 Challenge Level: Challenge Level:1

Think of a number... follow the machine's instructions. I know what your number is! Can you explain how I know?

problem icon

Your Number Was...

Stage: 3 Challenge Level: Challenge Level:1

Think of a number and follow my instructions. Tell me your answer, and I'll tell you what you started with! Can you explain how I know?

problem icon

Always a Multiple?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

problem icon

Pick's Theorem

Stage: 3 Challenge Level: Challenge Level:1

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

problem icon

How Big?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

If the sides of the triangle in the diagram are 3, 4 and 5, what is the area of the shaded square?

problem icon

Even So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

problem icon

Quick Times

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

problem icon

Legs Eleven

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

problem icon

Seven Up

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?

problem icon

The Pillar of Chios

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

problem icon

Fibs

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The well known Fibonacci sequence is 1 ,1, 2, 3, 5, 8, 13, 21.... How many Fibonacci sequences can you find containing the number 196 as one of the terms?

problem icon

Good Work If You Can Get It

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A job needs three men but in fact six people do it. When it is finished they are all paid the same. How much was paid in total, and much does each man get if the money is shared as Fred suggests?

problem icon

Boxed In

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?

problem icon

Hallway Borders

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A hallway floor is tiled and each tile is one foot square. Given that the number of tiles around the perimeter is EXACTLY half the total number of tiles, find the possible dimensions of the hallway.

problem icon

Magic Sums and Products

Stage: 3 and 4

How to build your own magic squares.

problem icon

How Much Can We Spend?

Stage: 3 Challenge Level: Challenge Level:1

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

problem icon

Sums of Pairs

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

problem icon

Diagonal Sums

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?