Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This problem is designed to help children to learn, and to use, the two and three times tables.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Use this information to work out whether the front or back wheel of this bicycle gets more wear and tear.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Resources to support understanding of multiplication and division through playing with number.

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

This task combines spatial awareness with addition and multiplication.

This challenge combines addition, multiplication, perseverance and even proof.

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.