How will you decide which way of flipping over and/or turning the grid will give you the highest total?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

This article for teachers suggests ideas for activities built around 10 and 2010.

56 406 is the product of two consecutive numbers. What are these two numbers?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Number problems at primary level that may require determination.

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

Resources to support understanding of multiplication and division through playing with number.

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Have a go at balancing this equation. Can you find different ways of doing it?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Can you work out some different ways to balance this equation?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

This problem is designed to help children to learn, and to use, the two and three times tables.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

How would you count the number of fingers in these pictures?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

This challenge combines addition, multiplication, perseverance and even proof.

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?