Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Can you complete this jigsaw of the multiplication square?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Here is a chance to play a version of the classic Countdown Game.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

This number has 903 digits. What is the sum of all 903 digits?