A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Can you replace the letters with numbers? Is there only one solution in each case?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

This problem is designed to help children to learn, and to use, the two and three times tables.

56 406 is the product of two consecutive numbers. What are these two numbers?

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Given the products of adjacent cells, can you complete this Sudoku?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you find what the last two digits of the number $4^{1999}$ are?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you complete this jigsaw of the multiplication square?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Here is a chance to play a version of the classic Countdown Game.