What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

56 406 is the product of two consecutive numbers. What are these two numbers?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

This problem is designed to help children to learn, and to use, the two and three times tables.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you replace the letters with numbers? Is there only one solution in each case?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Given the products of adjacent cells, can you complete this Sudoku?

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Can you find what the last two digits of the number $4^{1999}$ are?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Use the information to work out how many gifts there are in each pile.

Have a go at balancing this equation. Can you find different ways of doing it?

A game that tests your understanding of remainders.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

Here is a chance to play a version of the classic Countdown Game.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Are these statements always true, sometimes true or never true?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?