This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Given the products of adjacent cells, can you complete this Sudoku?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Have a go at balancing this equation. Can you find different ways of doing it?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you find what the last two digits of the number $4^{1999}$ are?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you work out some different ways to balance this equation?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

56 406 is the product of two consecutive numbers. What are these two numbers?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Here is a chance to play a version of the classic Countdown Game.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

This problem is designed to help children to learn, and to use, the two and three times tables.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.