During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

This article for teachers suggests ideas for activities built around 10 and 2010.

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

Use this information to work out whether the front or back wheel of this bicycle gets more wear and tear.

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Given the products of adjacent cells, can you complete this Sudoku?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you complete this jigsaw of the multiplication square?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

Resources to support understanding of multiplication and division through playing with number.

This problem is designed to help children to learn, and to use, the two and three times tables.

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?