During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

This article for teachers suggests ideas for activities built around 10 and 2010.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you complete this jigsaw of the multiplication square?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Use this information to work out whether the front or back wheel of this bicycle gets more wear and tear.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you replace the letters with numbers? Is there only one solution in each case?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Unmultiply is a game of quick estimation. You need to find two numbers that multiply together to something close to the given target - fast! 10 levels with a high scores table.

Here is a chance to play a version of the classic Countdown Game.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

A game that tests your understanding of remainders.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?