Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

56 406 is the product of two consecutive numbers. What are these two numbers?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?

This problem is designed to help children to learn, and to use, the two and three times tables.

Resources to support understanding of multiplication and division through playing with number.

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Use the information to work out how many gifts there are in each pile.

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

Can you each work out the number on your card? What do you notice? How could you sort the cards?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you work out some different ways to balance this equation?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Use this information to work out whether the front or back wheel of this bicycle gets more wear and tear.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

This task combines spatial awareness with addition and multiplication.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you complete this jigsaw of the multiplication square?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?