Amazing as it may seem the three fives remaining in the following `skeleton' are sufficient to reconstruct the entire long division sum.

The number 10112359550561797752808988764044943820224719 is called a 'slippy number' because, when the last digit 9 is moved to the front, the new number produced is the slippy number multiplied by 9.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

This number has 903 digits. What is the sum of all 903 digits?

Find the highest power of 11 that will divide into 1000! exactly.

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Watch our videos of multiplication methods that you may not have met before. Can you make sense of them?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

Find the number which has 8 divisors, such that the product of the divisors is 331776.

56 406 is the product of two consecutive numbers. What are these two numbers?

Number problems at primary level that may require determination.

This problem is designed to help children to learn, and to use, the two and three times tables.

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

Chandrika was practising a long distance run. Can you work out how long the race was from the information?

This task combines spatial awareness with addition and multiplication.

Use the information to work out how many gifts there are in each pile.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Grandma found her pie balanced on the scale with two weights and a quarter of a pie. So how heavy was each pie?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

How will you decide which way of flipping over and/or turning the grid will give you the highest total?

Given the products of adjacent cells, can you complete this Sudoku?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Number problems at primary level that require careful consideration.