The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

This problem is designed to help children to learn, and to use, the two and three times tables.

Amazing as it may seem the three fives remaining in the following `skeleton' are sufficient to reconstruct the entire long division sum.

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

56 406 is the product of two consecutive numbers. What are these two numbers?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Number problems at primary level that may require determination.

Find the highest power of 11 that will divide into 1000! exactly.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Watch our videos of multiplication methods that you may not have met before. Can you make sense of them?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

There are four equal weights on one side of the scale and an apple on the other side. What can you say that is true about the apple and the weights from the picture?

This number has 903 digits. What is the sum of all 903 digits?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Use the information to work out how many gifts there are in each pile.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?