Can you complete this jigsaw of the multiplication square?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game that tests your understanding of remainders.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Here is a chance to play a version of the classic Countdown Game.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Given the products of adjacent cells, can you complete this Sudoku?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Unmultiply is a game of quick estimation. You need to find two numbers that multiply together to something close to the given target - fast! 10 levels with a high scores table.

How will you decide which way of flipping over and/or turning the grid will give you the highest total?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.